
WAXExpressTrade Documentation
Release 0.0.1

WAX ExpressTrade

Nov 27, 2020

General Documentation

1 Issues 3
1.1 Getting Started . 3
1.2 Initial Testing . 5
1.3 Setup . 8
1.4 Backend (Server) . 9
1.5 Frontend (Website) . 15
1.6 Quick Overview . 26
1.7 ICase . 28
1.8 ICaseSite . 37
1.9 IEthereum . 42
1.10 IItem . 43
1.11 ITrade . 58
1.12 IUser . 69
1.13 Additional Information . 74

i

ii

WAXExpressTrade Documentation, Release 0.0.1

This is a tutorial/documentation about the WAX ExpressTrade API.

General Documentation 1

WAXExpressTrade Documentation, Release 0.0.1

2 General Documentation

CHAPTER 1

Issues

If you have troubles with the API, head over to the official GitHub repository.

Hint: The playlist for the videos can be found on YouTube

1.1 Getting Started

Hint: The video for this parts can be found here

This document will show you how to implement the WAX ExpressTrade to your website.

Info

If you already have a VGO API Key and an Ethereum Adress you can skip this section.

1.1.1 Basic information

The documentation requires a little bit of knowledge about the following points.

API

An application program interface (API) is a set of routines, protocols, and tools for building software applications.
Basically, an API specifies how software components should interact. Additionally, APIs are used when programming
graphical user interface (GUI) components. A good API makes it easier to develop a program by providing all the
building blocks. A programmer then puts the blocks together. So this means it is even easier to implement the WAX
ExpressTrade features.

3

https://github.com/OPSkins/trade-opskins-api
https://www.youtube.com/playlist?list=PLZFDCU5iI5bp3BLrYBE7F2KfnC0LCW3AA
https://www.youtube.com/watch?v=y-E3WUB7VHA

WAXExpressTrade Documentation, Release 0.0.1

Server & HTTP

So the server usually handles all the requests made to the API. For better structure you will need some kind of HTTP
server to make requests to the WAX ExpressTrade API. HTTP related terms like GET and POST shouldn’t be a
problem as well.

JSON

JSON is very popular nowadays, especially with these so called REST-API’s. The WAX ExpressTrade API uses JSON
to format the information. Every requests needs some kind of JSON-structure. The response of every API-endpoint
will also always return an JSON-Object (Unless you encounter some kind of other error).

1.1.2 Requirements

To get in touch with WAX ExpressTrade API it only requires three things. We will go over them, what they do and
how to fulfill them.

VGO API Key

For most of the WAX ExpressTrade API you will need to provide an API Key. (To identify yourself) You can simply
generate one by using the following method.

1. Open up some kind of console (Windows Command Prompt, Linux/Mac Terminal)

2. Copy the line beneath and change the site_url and display_name to a valid value. (This should be the
name of your website)

$ curl -d '{"site_url":"http://yoursite.com","display_name":"yoursite"}' -H "Content-
→˓Type: application/json" -X POST https://api-trade.opskins.com/IUser/CreateVCaseUser/
→˓v1/

3. Wait for the response

Listing 1: You probably will receive a response like this (If not, the error
should be returned. Try to adjust/edit your curl line and try again)

{
"status":1,
"time":1535545650,
"response":{

"api_key":"some kind of api key",
"user":{

"id":-868,
"steam_id":"",
"display_name":"yoursite",
"avatar":null,
"twofactor_enabled":false,
"api_key_exists":true,
"sms_phone":null,
"contact_email":null,
"allow_twofactor_code_reuse":false,
"inventory_is_private":true,
"auto_accept_gift_trades":false,
"vcase_restricted":true

(continues on next page)

4 Chapter 1. Issues

WAXExpressTrade Documentation, Release 0.0.1

(continued from previous page)

}
}

}

4. Your “VGO API Key” will be placed in the JSON-Object with the name “api_key”. Save it, you will need it
later on

Ethereum Address

An Ethereum Address is needed for the key requests (to open cases). There are tons of Ethereum Wallets on the
internet, nearly all of the are free to use. For the ease of use I’d recommend MetaMask or if you want it more secure
maybe go for something like Coinbase. The choice is up to you. At some point you should have an Ethereum Adress
looking something like this: 0xde0B295669a9FD93d5F28D9Ec85E40f4cb697BAe

1.2 Initial Testing

This specific section should help you to verify and understand how and if you requests work.

1.2.1 The First Request

To make your first request I recommend a program like Postman.

But why would we need that?
Simply because it is easier to use if you want to make requests to the API and you can quickly test and check specific
API endpoints. You can add your API Key which we will need for some actions and you can format the JSON much
more easier as well.

Once you downloaded the program you will be prompted to sign in (You can skip that at the bottom). Afterwards we
can try to make our first request to the WAX ExpressTrade API.

Our first request will not require an VGO API Key. At the top input bar where it says Enter request URL type
in something like https://api-trade.opskins.com/ICase/GetCaseSchema/v1 and choose GET as
your request method.

1.2. Initial Testing 5

https://metamask.io/
https://www.coinbase.com//
https://www.getpostman.com/

WAXExpressTrade Documentation, Release 0.0.1

If it was successful, you should see something like that in the image above.
Well that was easy, but you also could have done that request in your browser by typing in the URL.

1.2.2 The Second Request

Now we want to make a request that requires the API Key. The WAX ExpressTrade API has a “Basic Authorization”
System. This means we have to convert your VGO API Key to Base64 before we make our request.

1. Head over to https://www.base64encode.org/.

2. Type in your API Key and add a colon : at the end of it so it looks something like this
47319062320152072c7da23f51327d:

3. Hit ENCODE and copy the Base64 string

4. Head over to Postman again and click on the tab “Headers”

5. For the Key you need to type in Authorization and for the Value you have to type in Basic
YOUR_BASE64_STRING

6 Chapter 1. Issues

https://www.base64encode.org/

WAXExpressTrade Documentation, Release 0.0.1

6. Once this header is set you can choose an API endpoint that requires the API key. In this case I chose https:/
/api-trade.opskins.com/IItem/GetItems/v1/ to get all the items and stats to each item in the
cases.

If you messed up something it probably will have a response like

{
"status": 401,
"time": 1535573754,
"message": "API Key Required"

}

Troubleshooting

1. Check if you have ticked the box to send the Authorization Header

2. Check your Key and Value for this specific header

3. Check your Base64-String. Does it end with “==” or not?

4. Check your String before converting it to Base64. Have you added to colon :?

5. Try a new API Key, or this one, used for the tutorial NDczMTkwNjIzMjAxNTIwNzJjN2RhMjNmNTEzMjdkOg==

1.2.3 Conclusion

So you have successfully requested data from the WAX ExpressTrade API. You can also POST data to the API.
Search for a POST request in the “Advanced Documentation”, add your API Key like we did in the tutorial above and
POST your data.

1.2. Initial Testing 7

WAXExpressTrade Documentation, Release 0.0.1

Of course you can try different endpoints, scroll through all the JSON-Data the server has returned and check it’s
content or use other request types such as POST.
But all in all this is pretty easy isn’t it? But we want to implement this into a website, not just requesting data in
Postman to view it.

1.3 Setup

We want to split up the implementation into 2 main parts

1.3.1 Backend (Server)

So the server (also called backend) should handle all our requests made to the WAX ExpressTrade API.
You may wonder why we should do that because we could make our requests through the frontend (Website) as well.
There are a couple of reasons starting with

1. You need some kind of server to host your website

• If you have a more static site, a simple Apache or NGINX server will probably do it

• But this tutorial focuses more on developing a web app and less on a static website

• Creating your own simple HTTP server will give you more flexibility

2. The VGO API Key

• As mentioned in the previous section we need the VGO API Key for most of our requests. So if you
want to make a request, for example to initiate a case opening, you would need the API Key of
course.
Keep in mind that you do not want to share you API Key with others, because it is linked to
your website and website name.
If you make your requests through the frontend (website) you have to save your API Key to the
HTTP request which means it is public and everybody can abuse it.
You need to make sure your server works as a middleware between the WAX ExpressTrade API and
your frontend (website).

1.3.2 Frontend (Website)

So the frontend (website) will be completely up to you. How you design it, how your animations will work, how you
will implement the requests.
Here are some recommendations you could use to make an advanced, progressive web app

1. The most known and common framework React

• easy to start and learn

• lot’s of free tutorials on YouTube (Check out Traversy Media for excellent and detailed tutorials)

• Direct links to the tutorial React JS Crash Course and a playlist about Learning React

2. Another great frontend framework Angular

• Nearly same features as React but everything in TypeScript instead of JavaScript

• Video Angular In 60 Minutes

8 Chapter 1. Issues

https://httpd.apache.org/
https://www.nginx.com/
https://reactjs.org/
https://www.youtube.com/user/TechGuyWeb
https://www.youtube.com/watch?v=A71aqufiNtQ
https://www.youtube.com/watch?v=vYldnghykaU&list=PLillGF-RfqbbKWfm3Y_RF57dNGsHnkYqO
https://angular.io/
https://reactjs.org/
https://www.youtube.com/watch?v=KhzGSHNhnbI

WAXExpressTrade Documentation, Release 0.0.1

3. Vue.js

4. Very simple and old school with plain JavaScript and jQuery (not recommended for progressive web apps)

1.4 Backend (Server)

Hint: The video for this parts can be found here

This section will be about how to request data from the WAX ExpressTrade API and how to bring this data to the
frontend (website) so the user.
For this purpose we will create a simple HTTP server in JavaScript with the help of Node.js.

Hint: All the code written below is also available on GitHub.

1.4.1 Requirements

In my opinion the easiest way to get started with an HTTP server is to create an Node.js HTTP Server. We will use
the very popular package express for this purpose.
But first let’s talk about the requirements to get started

1. We will need Node.js.

• Installation guide for Windows

• Installation guide for Linux (all versions)

2. A more advanced text editor than Notepad in Windows to write our code. Recommended free text editors:

• Atom

• Visual Studio Code (only for Windows)

• Sublime Text

3. (Optional and only for Windows users) A different console

• I personally do not like the command prompt in Windows

• My favorite console so far is the GIT Console (You will see why later on)

Once you installed Node.js and chose your text editor we can start coding. I will use the following setup for this
tutorial

• Node version 8.11.4 (you can check it by simply opening a console and by typing in node --version)

• Atom (1.30.0) as my text editor with the File Icons Package (just for cosmetic)

• Because I am on Windows 10, I am going to use the GIT console

1.4. Backend (Server) 9

https://vuejs.org/
https://jquery.com/
https://www.youtube.com/watch?v=Y-GT6gRiUr4
https://nodejs.org/en/
https://github.com/TheDevelopingAlex/WAX-ExpressTrade-API/tree/master/example/backend
https://www.npmjs.com/package/express
https://nodejs.org/en/
http://blog.teamtreehouse.com/install-node-js-npm-windows
https://nodejs.org/en/download/package-manager/
https://atom.io/
https://code.visualstudio.com/
https://www.sublimetext.com/
https://git-scm.com/
https://nodejs.org/en/
https://atom.io/packages/file-icons

WAXExpressTrade Documentation, Release 0.0.1

1.4.2 Step 1

We need to create all the dependencies for our Node.js Server

1. Create a folder where you want to put your server

2. Open up a console and direct into that newly created directory (if you are using the GIT console on Windows,
you can simply right-click and choose “Git Bash Here”)

3. Once you are in the desired directory type in npm init to start the setup

• package name Choose the name of your project. Usually it picks up the name of your folder. I will
call it wax_tut.

• version Doesn’t matter at all, just hit Enter

• description Type in something like “This is a tutorial on how to implement the WAX ExpressTrade
API” or if you want to skip it, hit Enter

• entry point This is important. Here you have to choose the name of your main server file. You can
either choose the default value “index.js” or rename it to something like server.js. I will call it
server.js

• test command Skip this for now

• git repository If you already got an git repository, you can type it in here. Otherwise you can skip
this.

• keywords Define some or skip, doesn’t really matter

• Author Basically your name

• license Just hit Enter

• Check your inputs and confirm with yes (Don’t worry you can change the values afterwards)

4. Create a JavaScript file with the name you chose at entry point. In this case you need to create a file called
server.js

5. Open this file with your desired text editor

1.4.3 Step 2

In Step 1 we created our project and our server file. In this part we will set up the basic structure of our server and test
it if everything works.

1. Double-Check your folder if you see both the package.json and server.js file.

2. Install the dependencies we need for the HTTP Server

• As mentioned earlier, we will use express for our HTTP server.

• Open up your console again and type in npm install --save express. This will install the
express package and with the option --save you will also save the dependency to your package.
json file, so you always know what dependencies are install in your “node_modules” folder

3. Paste this basic HTTP server into your server.js file

var express = require('express')
var app = express()

app.get('/', function (req, res) {
res.send('Hello World')

(continues on next page)

10 Chapter 1. Issues

https://www.npmjs.com/package/express

WAXExpressTrade Documentation, Release 0.0.1

(continued from previous page)

})

app.listen(3000)

Code explanation

• var express = require('express') First of all we implement our express package so we can use
all it’s functions.

• var app = express() Afterwards we create an instance of the class so we can access every function.

• Next we create our first route that will send a response once it gets called.

– But the method has to be GET and the route must be “/” to access it.

• The last part is on which port our server should listen. Keep 3000 for now, but you can always change it as you
wish.

Let’s try it out

So if you pasted in this code and saved it to the server.js file, go over to your console again (make sure you are in
the right directory) and type in node server.js to boot up the server.

Note: For testing purpose I recommend the package nodemon so the server simply restarts every time we change
something. Otherwise you would have to cancel it with CTRL+C and restart it with node server.js. Install the
package with npm install -g nodemon and start your server with nodemon server.js

Once your server is running either go to your browser or open up Postman and type in 127.0.0.1:3000. (This is
your local IP-Address on your computer)
If you are being greeted with “Hello World” you have successfully created your HTTP server in JavaScript

1.4.4 Step 3

Your HTTP server is up and running and you have successfully accessed it. Time to request data from the WAX
WAX ExpressTrade API.
So the basic idea behind this

1. We request something from OUR HTTP server like we did to check if the server is working e.g. 127.0.0.
1:3000/caseschema.

2. The server should request data from the WAX ExpressTrade API before it sends the response back to us.

3. Instead of “Hello World” we should see data from the ExpressTrade API.

Let’s see how we can do that.

1. We need another package to request data from other sources. For this we will use axios.

2. Head to your console and press CTRL+C to stop the server.

3. Type in npm install --save axios to install the package.

1.4. Backend (Server) 11

https://www.npmjs.com/package/axios

WAXExpressTrade Documentation, Release 0.0.1

4. Head over to the text editor and change the code.

// Packages
var express = require('express')
var Axios = require('axios');

// Variables
var vgoURL = "https://api-trade.opskins.com";
var vgoAPIKey = "YOUR API KEY";

// Variable for WAX ExpressTrade requests
var vgoAPI = Axios.create({
baseURL: vgoURL,
headers: {
Authorization: 'Basic ' + Buffer.from(vgoAPIKey + ':').toString('base64'),

},
});

// create express server
var app = express()

// route 1 (simple GET request)
app.get('/caseschema', async function (req, res) {
let response = await vgoAPI.get('/ICase/GetCaseSchema/v1');
res.send(response.data);

});

// start server
var listener = app.listen(3000, function() {
console.log('Listening on port ' + listener.address().port);

});

So the code changed quite a bit, let’s go over it real quick and talk about how you can customize it.
So following changes have been made:

1. I added the axios package that we use to request the data from the API

2. Two new variables have been added vgoURL and vgoAPIKey. You do not need to touch the vgoURL but you
have to paste in your generated VGO API Key (Not the Base64 encoded one, but the plain VGP API Key)

3. Afterwards I created a new instance of axios and saved it to the variable vgoAPI. This comes in pretty handy
because later on we only need to call the variable vgoAPI to make a request to the actual API. This request will
always have the “Authorization Key” in it, so we don’t have to worry about that.

4. I made some changes to the GET / route and renamed it GET /caseschema. It now requests data from the WAX ExpressTrade API. You may wonder why there is an async/await in it. I’ll explain this as short as possible.

• The quick and easy answer is, that the async which stands for “asynchronous” prevents Node.js to
do things at the same time.

• “Asynchronous” means it is not existing or occurring at the same time.

• If don’t use the async/await your response would be empty because Node.js is trying to do this one
function at the same time.

• The request/response to the WAX ExpressTrade API needs more time than our server needs to respond
to the GET /caseschema call.

12 Chapter 1. Issues

WAXExpressTrade Documentation, Release 0.0.1

5. No we send the response.data as a response instead of “Hello World”

6. I changed to code on how the server starts, it does the same but will show you a console entry when the server
has been started successfully

So once again either head over to your browser or Postman (this time I highly recommend Postman because it will be
a lot of JSON data) and try out what results you get.
You should get a list off all the available cases (name, image) and what item skus are in it.

1.4.5 Additional Examples

This section is about some another examples of how to use the WAX ExpressTrade API.

Example 1

Listing 2: GET request with additional parameters

// route 2 (GET request with additional parameters)
app.get('/keycount', async function (req, res) {

var trade_url = req.query.trade_url;

if (!trade_url) {
return res.send("No trade url provided");

}

let response = await vgoAPI.get(`/ICaseSite/GetKeyCount/v1?trade_url=${trade_url}`);
res.send(response.data);

});

Explanation

• So this this route requests the key amount a specific user has. Again we use a GET method but this time we have
to provide an additional parameter in the URL called trade_url.

• In express you can access those URL parameters via req.query.YOUR_PARAMETER. Easy to use and fast
to understand. So you save the req.query.trade_url parameter to a variable called trade_url.

• Afterwards we quickly check for this parameter if it has been provided. If not provided we simply return a
response. (Sidenote: You need to type return res.send("...") to stop the function from continuing. If
there is no return provided, the code will continue and fail at the request.)

• Anyways, with a provided trade_url we request the data from the server. Take a look and remember on how
to add the query to the URL ?trade_url=${trade_url}, you will probably need that for other requests
as well.

• And for the last part we send the response back to the request.

Note: You can only request the keycount of people that have been registered on OPSkins.

1.4. Backend (Server) 13

WAXExpressTrade Documentation, Release 0.0.1

How To Test It

Note: If you are familiar on URL parameters and how to use them properly you can probably skip this part and just
test your newly created route.

For those that are not comfortable with, I got you

• URL parameters are additional string in the URL.

• For example if you go to https://www.google.com you won’t see any parameters in the URL.

• But once you search for something like wax expresstrade, Google will add parameters to
its URL. The URL will look something like this https://www.google.com/search?
source=hp&ei=5m6IW6r0LY_YwQL2ma_ACg ... (Not the full URL)

• So the URL has a parameter for source and ei and so on and so forth.

• In our case the parameter should have the name trade_url and has to be provided.

• This means our URL has to look like this http://127.0.0.1:3000/keycount?
trade_url=VALID_TRADE_URL to successfully request data from the API

Note: If you encounter some kind of error it will probably be something like
UnhandledPromiseRejectionWarning and the API responded with something like Request failed
with status code 400. I will talk about that in the next example (Explanation, 4.).

Example 2

Listing 3: POST request with additional parameters

// used to access the body as it was JSON
app.use(express.json())

// route 3 (POST request with additional parameters)
var affiliateAddress = "YOUR ETHEREUM ADRESS";

app.post('/opencase', function (req, res) {

if (!req.body.trade_url || !req.body.caseId || !req.body.amount) {
return res.send("One or more parameters are missing!");

}

vgoAPI.post('/ICaseSite/SendKeyRequest/v1', {
trade_url : req.body.trade_url,
case_id: req.body.caseId,
amount: req.body.amount,
affiliate_eth_address: affiliateAddress

})
.then(function(response) {
res.send(response.data);

})
.catch(function(error) {
res.send(error.response.data.message);

})

(continues on next page)

14 Chapter 1. Issues

WAXExpressTrade Documentation, Release 0.0.1

(continued from previous page)

});

Explanation

So first of all this is a more advanced example but a very efficient and easy to understand one.

1. We are using a middleware for express to access the body as it was JSON. app.use(express.json())

2. We created a variable affiliateAddress. You need to put your Ethereum Address to receive the commis-
sion for an opened case.

3. A new route has been created, but this time we do not use the GET method, for this example we are using the
POST method.

4. Once again we check for three parameters that must be included in the request. But this time we are sending it
via the body so the parameters won’t be in the URL.

5. A new way of requesting data from the WAX ExpressTrade API

• First of all we are using the POST method again, that is very important because only the POST method
will be recognized on this endpoint

• Second of all we are using a better way of handling the response and sending it back. This means we
are using the option of “Promises”. Thankfully axios got our back and provides a great and standard
way of handling “Promises”

• So we do not save the response to a variable called response like we did in all the other routes.
Instead we use the then() callback option.

• Once our request has succeeded, the then() function will be called and we can simply send our
response as we did in the previous routes

• The big advantage of “Promises” is the catch() function.

• If there is any error it will be handled by this function. If the request wasn’t successful, the “message”
can be found by the given query error.response.data.message (the data is an JSON-Object)

Caution: If you are thinking of serious development I highly recommend using “Promises”. Not using “Promises”
actually is deprecate!

1.5 Frontend (Website)

Hint: The video for this parts can be found here

This specific section is all about on how to use your “middleware API” for your purpose. If you already know how to
build a website and make request, handle your data or errors you can skip this section and head over to the Advanced
Documentation to see the WAX ExpressTrade API documentation.

In this section I want to show you how you can implement your “middleware API” into an Angular web app.

1.5. Frontend (Website) 15

https://www.youtube.com/watch?v=b_uvwU7vBOw

WAXExpressTrade Documentation, Release 0.0.1

Caution: DISCLAIMER This section is just a basic tutorial on how to get started with implementing the API on
a website. If you know how to do it on your own just skip this!

Hint: All the code written below is also available on GitHub.

1.5.1 Angular

Angular definitely more complex than other frontend frameworks, this is why I want to give you a quick overview.

Requirements

1. We will need Node.js.

• Installation guide for Windows

• Installation guide for Linux (all versions)

2. A more advanced text editor than Notepad in Windows to write our code. Recommended free text editors:

• Atom

• Visual Studio Code

• Sublime Text

3. (Optional and only for Windows users) A different console

• I personally do not like the command prompt in Windows

• My favorite console so far is the GIT Console (You will see why later on)

4. The Angular CLI

• You can simply download Angular CLI by typing npm install -g @angular/cli into your
console

• We need that to create and build our Angular application

Once you installed Node.js and chose your text editor we can start coding. I will use the following setup for this
tutorial

• Node version 8.11.4 (you can check it by simply opening a console and by typing in node --version)

• Atom (1.30.0) as my text editor with the File Icons Package (just for cosmetic)

• Because I am on Windows 10, I am going to use the GIT console

1.5.2 Step 1

Creating an setting up our application.

1. To create a new application type ng new PROJECT-NAME in a newly opened console (watch out for the path in the console)

• You can choose any project name you like, as long as it matches the criteria

2. cd into your newly created project folder with cd PROJECT-NAME

16 Chapter 1. Issues

https://github.com/TheDevelopingAlex/WAX-ExpressTrade-API/tree/master/example/frontend
https://nodejs.org/en/
http://blog.teamtreehouse.com/install-node-js-npm-windows
https://nodejs.org/en/download/package-manager/
https://atom.io/
https://code.visualstudio.com/
https://www.sublimetext.com/
https://git-scm.com/
https://nodejs.org/en/
https://atom.io/packages/file-icons

WAXExpressTrade Documentation, Release 0.0.1

3. Start your Angular application with ng serve

4. Open up your browser and type in 127.0.0.1:4200 or localhost:4200

5. You will be greeted with the default starter template

Caution: Make sure your API server is still up and running

1.5.3 Step 2

Time to add components, services and directories we need for our project.
If you have never worked with Angular, I recommend reading this article before you start coding your application.

1. Cancel the ng serve with CTRL+C

2. Change directory by typing cd src/app/

3. Create a new folder named components mkdir components

4. Change directory once again into the newly created directory cd components/

5. Create your components with ng g component COMPONENT-NAME

• For this tutorial we will create a component named navbar and main

Now repeat these steps with services

1. We have to change directory to src/app/ again because now we are in src/app/componets. Simply
type cd ..

2. Create a new folder named services mkdir services and cd into it

3. Create your services by typing ng g service SERVICE-NAME

• For this tutorial we will create a service named api

1.5. Frontend (Website) 17

https://angular.io/guide/architecture

WAXExpressTrade Documentation, Release 0.0.1

That’s it for creating directories, components and files (You could generate all these things in the src/app/
directory but it will become very messy.)

You can now serve your application once again with ng serve

1.5.4 Step 3

Open up your text editor and add your Angular application folder as a project folder.

1. Search for the file app.module.ts in src/app/.

2. Your components should already be added to this file (If not, just look at the code given below). Your code
should look something like this

import { BrowserModule } from '@angular/platform-browser';
import { NgModule } from '@angular/core';

import { AppComponent } from './app.component';
import { NavbarComponent } from './components/navbar/navbar.component';
import { MainComponent } from './components/main/main.component';

@NgModule({
declarations: [
AppComponent,
NavbarComponent,
MainComponent

],
imports: [
BrowserModule

],
providers: [],
bootstrap: [AppComponent]

})
export class AppModule { }

3. Add your “API Service” by typing import { ApiService } from './services/api.
service'; and add the ApiService Class to the providers.

import { ApiService } from './services/api.service';

providers: [ApiService],

4. Next we have to add the HttpClientModule to our app.module.ts file to make HTTP requests to the server.

• Simply import it at the top by typing import { HttpClientModule } from '@angular/
common/http';

• And add the HttpClientModule to the imports at the bottom

5. (optional) The last thing we are going to add is Bootstrap to have some kind of nice design and a better UI

• Head over to https://getbootstrap.com/ and download the latest version (currently 4.1.3)

• Go for the Compiled CSS and JS Bootstrap version

• Go to https://jquery.com/download/ and download the latest version of jQuery (go for the “compresed” one)

18 Chapter 1. Issues

https://getbootstrap.com/
https://getbootstrap.com/
https://jquery.com/download/

WAXExpressTrade Documentation, Release 0.0.1

– You are better off if you hover of the “Download the compressed, production jQuery 3.3.1”
link and right-click on it to “Save link as”

– Save it to the Desktop for now

• Head to your Angular project folder and search for the src/assets/ directory via your explorer

• Unzip the Bootstrap archive and copy the css and js folder into the src/assets directory

• Copy the jQuery.js file you saved on the Desktop into the src/assets/js folder

• Open up your text editor and search for the angular.json file in the project folder

• Search for line 25, you should see an entry called styles. Copy this path above the "src/
styles.css" one "src/assets/css/bootstrap.min.css"

• Underneath the style entry there also should be scripts - Add the two following lines
- "src/assets/js/jquery-3.3.1.min.js" - "src/assets/js/bootstrap.min.
js" - Don’t mess up the order of this two line and don’t forget a comma after the jquery entry

It should look like this afterwards

{
"styles": [
"src/assets/css/bootstrap.min.css",
"src/styles.css"

],
"scripts": [
"src/assets/js/jquery-3.3.1.min.js",
"src/assets/js/bootstrap.min.js"

]
}

The last step is to restart your Angular application by canceling the serve with CTRL+C and ng serve.
That was it, we can now start coding our application.

1.5.5 Step 4

This section is about using our two created components and how to add some content on the page.

Implementing our components

Change the code in the app.component.html file to this

<app-navbar></app-navbar>
<app-main></app-main>

Explanation

With this two tags (which are Angular specific) we include our two created components navbar and main. The
name app-navbar and app-main is specified by the component.
You can head over to your browser and check what has changed. You should see “navbar works” and “main works”.
If not, open up the browser developer console and check for any errors.

1.5. Frontend (Website) 19

WAXExpressTrade Documentation, Release 0.0.1

Adding content to the navbar and main component

1. Head over to the navbar component and search for the navbar.component.html file.

2. Copy the following template into the HTML file

Listing 4: Default navbar template found on https://getbootstrap.com/
docs/4.1/components/navbar/

<nav class="navbar navbar-expand-lg navbar-light bg-light" style="margin-bottom: 1em;
→˓">
<div class="container">

WAX Tutorial
<button class="navbar-toggler" type="button" data-toggle="collapse" data-target="

→˓#navbarSupportedContent" aria-controls="navbarSupportedContent" aria-expanded="false
→˓" aria-label="Toggle navigation">

</button>

<div class="collapse navbar-collapse" id="navbarSupportedContent">
<ul class="navbar-nav mr-auto">
<li class="nav-item active">
Home (current)

<li class="nav-item">
Trade

→˓

</div>

</div>
</nav>

I have changed the navbar a little bit so we can work with it even better.

Now let’s change the main component

1. Search for the main component directory to edit the main.component.html file.

2. Add the following code

Listing 5: Default card component

<div class="container">
<div class="row">
<div class="col">
<div class="card" style="width: 18rem;">

<img class="card-img-top" src="https://via.placeholder.com/350x150" alt="Card
→˓image cap">

<div class="card-body">
<h5 class="card-title">Card title</h5>
<p class="card-text">Some quick example text to build on the card title and

→˓make up the bulk of the card's content.</p>
Go somewhere

(continues on next page)

20 Chapter 1. Issues

https://getbootstrap.com/docs/4.1/components/navbar/
https://getbootstrap.com/docs/4.1/components/navbar/

WAXExpressTrade Documentation, Release 0.0.1

(continued from previous page)

</div>
</div>

</div>
</div>

</div>

Now save everything and head over to your browser to see the changes.

1.5.6 Step 5

Time to request data from the server and show it on our website.

Focusing on the API service

1. Open up the api.service.ts file

2. Copy in the following code, and check the “Explanation” below to understand what is going on.

import { Injectable } from '@angular/core';

import { HttpClient } from '@angular/common/http';

@Injectable({
providedIn: 'root'

})
export class ApiService {

constructor(private _http: HttpClient) { }

getCaseSchema() {
return this._http.get<CaseSchema>("http://127.0.0.1:3000/caseschema");

}

}

(continues on next page)

1.5. Frontend (Website) 21

WAXExpressTrade Documentation, Release 0.0.1

(continued from previous page)

interface CaseSchema {
status: any,
time: any,
response: any

}

Explanation

1. Once again we need the HttpClient to access HTTP requests

2. To use it, we need to define it in the constructor as well

3. We created a function that requests the “CaseSchema” from our API

4. This function can now be called from everywhere

Implementing The Service

So the next thing is to use our service function on the main component.

1. Open up the main.component.ts file (This file contains all the logic behind your static website)

2. Copy the code below and paste it into the file

3. Head to the explanation section to understand the code

import { Component, OnInit } from '@angular/core';

import { ApiService } from '../../services/api.service'

@Component({
selector: 'app-main',
templateUrl: './main.component.html',
styleUrls: ['./main.component.css']

})
export class MainComponent implements OnInit {

constructor(private _api: ApiService) {
this._api.getCaseSchema()

.subscribe(data => {
console.log(data);

}, error => {
console.error(error);

});
}

ngOnInit() { }

}

Explanation

1. So first of all we have to include our API service file into this one to use our function

2. Once again we create an instance of the class as seen in the constructor()

22 Chapter 1. Issues

WAXExpressTrade Documentation, Release 0.0.1

3. We call the function in the constructor so once the website is loading we are requesting the data immediately

4. How does the function even work?

• this._api.getCaseSchema() this is just the way to call the function

• .subscribe() Angular works with Observables which means you can only subscribe or unsub-
scribe to them (More about Observables can be found here)

• Inside the subscribe() Method we can access two variables. One that contains our data called
data in this case (You can call it whatever you want) and another one that contains any errors
called error here (Again you can call it whatever you want)

• It is recommended to use a better way of handling errors than simply log them to the console.

5. For now we are just printing the data to the browser developer console.

So let’s head over to the browser and open up the console (Shortcut: F12)

Error

So you probably see an error saying No 'Access-Control-Allow-Origin' header is present on
the requested resource.. This is more or less our “mistake” but actually this is a safety feature provided by
your browser (I won’t go any deeper on that topic).

We can fix this by creating a proxy for this request.

1. Create a file named proxy.conf.json in the root folder of your Angular project folder

2. Copy and paste the following code

{
"/caseschema": {
"target": "http://localhost:3000",
"secure": false,
"logLevel": "debug"

}
}

3. Edit the angular.json file.

• Head to line ~54 (this may differ, but just look for the entry "serve")

• Copy "proxyConfig": "proxy.conf.json" into the options so it looks like this

{
"serve": {
"builder": "@angular-devkit/build-angular:dev-server",
"options": {

"browserTarget": "frontend:build",
"proxyConfig": "proxy.conf.json"

},
"configurations": {
"production": {
"browserTarget": "frontend:build:production"

}
}

}
}

1.5. Frontend (Website) 23

http://reactivex.io/documentation/observable.html

WAXExpressTrade Documentation, Release 0.0.1

4. Restart the Angular serve instance by opening up the console, pressing CTRL+C and entering ng serve once
again.

5. Adjust the URL in the api.service.ts file from http://127.0.0.1:3000/caseschema to just
/caseschema

Now head to your browsers (maybe you have to refresh the website) and take a look in the console. You now should
see the data from the WAX ExpressTrade API.

1.5.7 Step 6

Showing the data on the website.

For now we are only logging the data in the console but we actually want to show off the requested data. For that we
have to adjust our code just a little bit.

1. Changes in the main.component.ts file

• Create a variable above the constructor() like this cases: any = [];

• Change the line console.log(data) to this.cases = data.response.cases;

2. Changes in the main.component.html file

<div class="container">
<div class="row">
<div class="col" *ngFor="let case of cases">

<div class="card" style="width: 18rem;">
<img class="card-img-top" src="{{ case.image['300px'] }}" alt="Card image cap

→˓">
<div class="card-body">
<h5 class="card-title">{{ case.name }}</h5>
<p class="card-text">SKUS:
 {{ case.skus}} </p>
Go somewhere

</div>
</div>

</div>
</div>

</div>

Explanation

1. Changes to the main.component.ts file

• We created the variable so we can access it later on in the HTML file.

• The only important thing is that the variable has to be an Array, so we can loop through it later on.

• Because we do not need the data to be logged in the console we just replaced it.

• Lastly we save the data.response.cases data to our created variable called cases

2. Changes made to the main.component.html file

• The most important line probably is line three

• As you can see we use the built in template syntax *ngFor. This is just a loop that creates as many
objects as items stored in the array. In this case we have four array entries, so this loop creates four
new object for us.

24 Chapter 1. Issues

WAXExpressTrade Documentation, Release 0.0.1

• This is a very convenient and easy way to create this objects. Especially because we can access each
variable of the array individually. This means we simply use another template syntax to access data
like “image”, “name” or “skus”

• To sum things up, this probably is the easiest and most convenient way to create an object for each, in
this case, case.

That’s it, you can check the result in your browser. It should look like this

1.5.8 Additional Examples

If you are still reading this, I got more of some nice and easy examples on how to use the API.

This additional example will be about opening a specific case and handling the error if one occurs.

Example 1

This piece of code will allow a user to initiate a case opening.

Listing 6: api.service.ts

openCase(trade_url, caseId, amount) {
return this._http.post<CaseSchema>('/opencase', { trade_url: trade_url, caseId:

→˓caseId, amount: amount });
}

Listing 7: main.component.ts

openCase(caseId, amount) {

// Usually you want to access the trade url via the request on your server
let trade_url = "VALID TRADE URL";

(continues on next page)

1.5. Frontend (Website) 25

WAXExpressTrade Documentation, Release 0.0.1

(continued from previous page)

if (!caseId || !amount)
return alert("CaseId or amount not valid!");

if (amount <= 0)
return alert("You need to open at least 1 case!");

this._api.openCase(trade_url, caseId, amount)
.subscribe(data => {

// this should be changed to some kind of alert as well, but I am unable to
→˓test this properly because of insufficient keys

console.log(data.response);
}, error => {

// simple browser alert with the error
alert(error.error.text);

});
}

Listing 8: main.component.html

<div class="container">
<div class="row">
<div class="col" *ngFor="let case of cases">

<div class="card" style="width: 18rem;">
<img class="card-img-top" src="{{ case.image['300px'] }}" alt="Card image cap

→˓">
<div class="card-body">
<h5 class="card-title">{{ case.name }}</h5>
<p class="card-text">SKUS:
 {{ case.skus}}</p>
<div class="input-group">

<input type="number" class="form-control" placeholder="Keys" aria-label=
→˓"keys" value="1" min="1" #keys>

<div class="input-group-append">
<span class="input-group-text btn btn-primary" (click)="openCase(case.

→˓id, keys.value)">Open
</div>

</div>
</div>

</div>
</div>

</div>
</div>

1.6 Quick Overview

1.6.1 API Interfaces

• ICase

• ICaseSite

• IEthereum

• IItem

26 Chapter 1. Issues

WAXExpressTrade Documentation, Release 0.0.1

• ITrade

• IUser

1.6.2 OAuth

OPSkins OAuth works automatically with WAX Trade. You can use OAuth to log users into your website via OPSkins
and (if desired) perform actions on their behalf via the API. Please see OPSkins OAuth Docs for more information.

1.6.3 API Response

Direct URL to API: https://api-trade.opskins.com

All successful API responses have return data within the “response” object. A typical response may look like this:

{
"status": 1,
"time": 1528334546,
"response": {

"offer": {
"some": "data"

}
}

}

If a response is paginated, the pagination details (current_page and total_pages) occur at the top-level of the object,
not inside the response body.

1.6.4 Response Status Codes

All status codes and their titles can be found in the table below. In some instances, the status code may be an HTTP
status code (e.g. 404). We recognize that mixing of these codes is not ideal and will fix this in the near future.

Status Code
OK 1
GENERIC_USER_ACCOUNT_ERROR 102
ACCESS_DENIED 106
NOT_LOGGED_IN 108
NEEDS_TWOFACTOR 112
TWOFACTOR_INCORRECT 122
USERNAME_TAKEN 124
UNACCEPTABLE_USERNAME 126
GENERIC_INTERNAL_ERROR 202
DATABASE_ERROR 204
NOT_FOUND 206
BAD_STATE 208
NO_MATCHING_ITEMS_FOUND 210
CANNOT_CREATE_DIRECTORY 216
FILE_UPLOAD_ERROR 218
FILE_UPLOAD_ALREADY_EXISTS 220
CANNOT_DELETE_FILE 222

Continued on next page

1.6. Quick Overview 27

https://docs.opskins.com/public/en.html#oauth
https://api-trade.opskins.com

WAXExpressTrade Documentation, Release 0.0.1

Table 1 – continued from previous page
Status Code
ALREADY_IN_THAT_STATE 226
LOCKED 228
DISABLED 234
MALFORMED_RESPONSE 236
EXPIRED 238
EMPTY_DATA 240
ITEM_NEEDS_REPAIR 246
ITEM_NOT_IN_INVENTORY 248
BAD_INPUT 302
UNACCEPTABLE_ITEM 304
DUPLICATE_ITEM 306
BAD_REQUEST 312
CAPTCHA_INVALID 316
RATE_LIMIT_EXCEEDED 318
MISSING_DEPENDENCY 326
REQUEST_OR_FILE_TOO_LARGE 330
UNACCEPTABLE_FILE_TYPE 332
THIRD_PARTY_UNAVAILABLE 408

1.6.5 Additional Notes

• On some endpoints you may be required to send a twofactor_code. Please see this comment if you need help.

• For transferring items from OPSkins to WAX ExpressTrade, see: OPSkins Docs: IInven-
tory/TransferToTradeSite/v1

1.6.6 Dynamic Images

• On some items, you may see image URLs like so: https://static.wax.io/d-img/...7cea75.png

• Default image dimensions will be 300x300 (Width x Height) or lower (depending on the original image).

• You may request a different dimension by changing the end of the URL: /600x600, /900x900, etc.

• Best fit will be chosen automatically, so you may not always get the exact dimensions you choose.

• You can request the original (highest resolution) image with /original

• e.g. https://static.wax.io/d-img/dynamic-apps/img/cdff6f51e89199e8c9772535a17cea75.png/50x50

• e.g. https://static.wax.io/d-img/dynamic-apps/img/cdff6f51e89199e8c9772535a17cea75.png/600x600

• e.g. https://static.wax.io/d-img/dynamic-apps/img/cdff6f51e89199e8c9772535a17cea75.png/original

1.7 ICase

Endpoints to handle cases

Contents

28 Chapter 1. Issues

https://github.com/OPSkins/trade-opskins-api/issues/16#issuecomment-399715578
https://docs.opskins.com/public/en.html#IInventory_TransferToTradeSite_v1
https://docs.opskins.com/public/en.html#IInventory_TransferToTradeSite_v1
https://static.wax.io/d-img/dynamic-apps/img/cdff6f51e89199e8c9772535a17cea75.png/50x50
https://static.wax.io/d-img/dynamic-apps/img/cdff6f51e89199e8c9772535a17cea75.png/600x600
https://static.wax.io/d-img/dynamic-apps/img/cdff6f51e89199e8c9772535a17cea75.png/original

WAXExpressTrade Documentation, Release 0.0.1

• ICase

– ICase/GetCaseSchema

* Authentication

* Input

* Output

– ICase/GetCaseOdds

* Authentication

* Input

* Output

– ICase/GetMinimumOpenVolume

* Authentication

* Input

* Output

– ICase/OpenWithKeys

* Authentication

* OAuth Scopes

* Input

* Output

1.7.1 ICase/GetCaseSchema

GET https://api-trade.opskins.com/ICase/GetCaseSchema/v1

Returns an object with all currently available cases.

Authentication

No auth required.

Input

Parame-
ter

Type Re-
quired

Description

cases int-
csv

A comma-separated list of case ids. If sent, output is limited to these specific
cases.

1.7. ICase 29

WAXExpressTrade Documentation, Release 0.0.1

Output

Parameter Type Description
cases array-

object
cases list

–id int Case ID
–name string Case name
–image object Case image URLS (Note: these images may change when remaining_opens hits 0)
—-300px string URL to 300px image
—-600px string URL to 600px image
—-900px string URL to 900px image
—-1800px string URL to 1800px image
—-2500px string URL to 2500px image
–skus array An array of item SKU in the case. Note that these may be updated overtime for vIRL

cases & will not always be the same.
–key_amount_per_caseint Number of keys required per 1 case opening
–max_opens int How many total items can be created from this case
–remain-
ing_opens

int How many items are remaining to be unboxed from this case. If this is 0, the case is
depleted and cannot be opened anymore.

1.7.2 ICase/GetCaseOdds

GET https://api-trade.opskins.com/ICase/GetCaseOdds/v1

Authentication

No auth required.

Input

Parame-
ter

Type Re-
quired

Description

cases int-
csv

A comma-separated list of case ids. If sent, output is limited to these specific
cases.

30 Chapter 1. Issues

WAXExpressTrade Documentation, Release 0.0.1

Output

Parameter Type Description
cases array-

object
An array of objects containing each case

–id int Case ID
–name string Case Name
–total_weight string Total weight of case in kilograms
–total_percent string Total percent, relative_percent’s added together.
–odds array-

object
An array containing object lists of odds per sku

—-sku int Item sku for VGO, def_id for other apps/items
—-weight string Weight correponding to total_weight
—-
relative_weight

string Weight relative to all other items in the case

—-
relative_percent

string % chance of receiving this item, can be displayed to user. (relative_weight *
100)

Listing 9: Example Output (https://api-trade.opskins.com/ICase/
GetCaseOdds/v1?cases=1)

{
"status": 1,
"time": 1545432800,
"response": {

"cases": [
{

"id": 1,
"name": "Weapon Case 1",
"total_weight": "258917554",
"total_percent": "99.99999999999986",
"odds": [
{

"sku": 100,
"weight": "780000",
"relative_weight": "0.00301254197697",
"relative_percent": "0.30125419769723"

},
{

"sku": 101,
"weight": "780000",
"relative_weight": "0.00301254197697",
"relative_percent": "0.30125419769723"

},
{

"sku": 102,
"weight": "10385844",
"relative_weight": "0.04011255258498",
"relative_percent": "4.01125525849823"

},
{

"sku": 103,
"weight": "10385844",
"relative_weight": "0.04011255258498",
"relative_percent": "4.01125525849823"

(continues on next page)

1.7. ICase 31

https://api-trade.opskins.com/ICase/GetCaseOdds/v1?cases=1
https://api-trade.opskins.com/ICase/GetCaseOdds/v1?cases=1

WAXExpressTrade Documentation, Release 0.0.1

(continued from previous page)

},
{

"sku": 104,
"weight": "10385844",
"relative_weight": "0.04011255258498",
"relative_percent": "4.01125525849823"

},
{

"sku": 105,
"weight": "12177681",
"relative_weight": "0.04703304512138",
"relative_percent": "4.70330451213825"

},
{

"sku": 106,
"weight": "12177681",
"relative_weight": "0.04703304512138",
"relative_percent": "4.70330451213825"

},
{

"sku": 107,
"weight": "12177681",
"relative_weight": "0.04703304512138",
"relative_percent": "4.70330451213825"

},
{

"sku": 108,
"weight": "12177681",
"relative_weight": "0.04703304512138",
"relative_percent": "4.70330451213825"

},
{

"sku": 109,
"weight": "12177681",
"relative_weight": "0.04703304512138",
"relative_percent": "4.70330451213825"

},
{

"sku": 110,
"weight": "23580231",
"relative_weight": "0.09107235347975",
"relative_percent": "9.10723534797490"

},
{

"sku": 111,
"weight": "23580231",
"relative_weight": "0.09107235347975",
"relative_percent": "9.10723534797490"

},
{

"sku": 112,
"weight": "23580231",
"relative_weight": "0.09107235347975",
"relative_percent": "9.10723534797490"

},
{

"sku": 113,
(continues on next page)

32 Chapter 1. Issues

WAXExpressTrade Documentation, Release 0.0.1

(continued from previous page)

"weight": "23580231",
"relative_weight": "0.09107235347975",
"relative_percent": "9.10723534797490"

},
{

"sku": 114,
"weight": "23580231",
"relative_weight": "0.09107235347975",
"relative_percent": "9.10723534797490"

},
{

"sku": 115,
"weight": "23580231",
"relative_weight": "0.09107235347975",
"relative_percent": "9.10723534797490"

},
{

"sku": 116,
"weight": "23580231",
"relative_weight": "0.09107235347975",
"relative_percent": "9.10723534797490"

},
{

"sku": 10000,
"weight": "10000",
"relative_weight": "0.00003862233304",
"relative_percent": "0.00386223330381"

},
{

"sku": 10001,
"weight": "10000",
"relative_weight": "0.00003862233304",
"relative_percent": "0.00386223330381"

},
{

"sku": 10002,
"weight": "10000",
"relative_weight": "0.00003862233304",
"relative_percent": "0.00386223330381"

},
{

"sku": 10003,
"weight": "10000",
"relative_weight": "0.00003862233304",
"relative_percent": "0.00386223330381"

},
{

"sku": 10004,
"weight": "10000",
"relative_weight": "0.00003862233304",
"relative_percent": "0.00386223330381"

},
{

"sku": 10005,
"weight": "10000",
"relative_weight": "0.00003862233304",
"relative_percent": "0.00386223330381"

(continues on next page)

1.7. ICase 33

WAXExpressTrade Documentation, Release 0.0.1

(continued from previous page)

},
{

"sku": 10006,
"weight": "10000",
"relative_weight": "0.00003862233304",
"relative_percent": "0.00386223330381"

},
{

"sku": 10007,
"weight": "10000",
"relative_weight": "0.00003862233304",
"relative_percent": "0.00386223330381"

},
{

"sku": 10008,
"weight": "10000",
"relative_weight": "0.00003862233304",
"relative_percent": "0.00386223330381"

},
{

"sku": 10009,
"weight": "10000",
"relative_weight": "0.00003862233304",
"relative_percent": "0.00386223330381"

},
{

"sku": 10010,
"weight": "10000",
"relative_weight": "0.00003862233304",
"relative_percent": "0.00386223330381"

},
{

"sku": 10011,
"weight": "10000",
"relative_weight": "0.00003862233304",
"relative_percent": "0.00386223330381"

},
{

"sku": 10012,
"weight": "10000",
"relative_weight": "0.00003862233304",
"relative_percent": "0.00386223330381"

},
{

"sku": 10013,
"weight": "10000",
"relative_weight": "0.00003862233304",
"relative_percent": "0.00386223330381"

},
{

"sku": 10014,
"weight": "10000",
"relative_weight": "0.00003862233304",
"relative_percent": "0.00386223330381"

},
{

"sku": 10015,
(continues on next page)

34 Chapter 1. Issues

WAXExpressTrade Documentation, Release 0.0.1

(continued from previous page)

"weight": "10000",
"relative_weight": "0.00003862233304",
"relative_percent": "0.00386223330381"

},
{

"sku": 10016,
"weight": "10000",
"relative_weight": "0.00003862233304",
"relative_percent": "0.00386223330381"

},
{

"sku": 10017,
"weight": "10000",
"relative_weight": "0.00003862233304",
"relative_percent": "0.00386223330381"

},
{

"sku": 10018,
"weight": "10000",
"relative_weight": "0.00003862233304",
"relative_percent": "0.00386223330381"

},
{

"sku": 10019,
"weight": "10000",
"relative_weight": "0.00003862233304",
"relative_percent": "0.00386223330381"

},
{

"sku": 10020,
"weight": "10000",
"relative_weight": "0.00003862233304",
"relative_percent": "0.00386223330381"

},
{

"sku": 10021,
"weight": "10000",
"relative_weight": "0.00003862233304",
"relative_percent": "0.00386223330381"

},
{

"sku": 10022,
"weight": "10000",
"relative_weight": "0.00003862233304",
"relative_percent": "0.00386223330381"

},
{

"sku": 10023,
"weight": "10000",
"relative_weight": "0.00003862233304",
"relative_percent": "0.00386223330381"

},
{

"sku": 10024,
"weight": "10000",
"relative_weight": "0.00003862233304",
"relative_percent": "0.00386223330381"

(continues on next page)

1.7. ICase 35

WAXExpressTrade Documentation, Release 0.0.1

(continued from previous page)

}
]

}
]

}
}

1.7.3 ICase/GetMinimumOpenVolume

GET https://api-trade.opskins.com/ICase/GetMinimumOpenVolume/v1

Returns the number of cases required to open in each case-opening request.

Authentication

No auth required.

Input

none

Output

Parameter Type Description
count int The number of cases required to open in each case-opening request.

1.7.4 ICase/OpenWithKeys

Info

Endpoint is disabled until further notice. (Jan. 11 2019)

POST https://api-trade.opskins.com/ICase/OpenWithKeys/v1

Open a Case with Keys

Authentication

API key required.

OAuth Scopes

manage_items

36 Chapter 1. Issues

WAXExpressTrade Documentation, Release 0.0.1

Input

Parameter Type Required Description
case_id int • The ID of the case being

opened

amount int Number of cases to open.
Defaults to 1. Maximum
value of 100

Output

Parameter Type Description
cases object Standard OpenedCase Object

1.8 ICaseSite

Warning: Only accounts created with IUser/CreateVCaseUser can access this endpoint.

Endpoints for case websites.

Contents

• ICaseSite

– ICaseSite/GetKeyCount

* Authentication

* Input

* Output

– ICaseSite/GetTradeStatus

* Authentication

* Input

* Output

– ICaseSite/SendKeyRequest

* Authentication

* Input

* Output

– ICaseSite/UpdateCommissionSettings

* Authentication

* Input

1.8. ICaseSite 37

WAXExpressTrade Documentation, Release 0.0.1

* Output

1.8.1 ICaseSite/GetKeyCount

GET https://api-trade.opskins.com/ICaseSite/GetKeyCount/v1

Returns the number of keys a specific user has on ExpressTrade

Authentication

API key required.

Input

Parameter Type Required Description
trade_url or steam_id string • The trade URL or the

Steam ID64 of the user

Output

Parameter Type Description
key_count string Number of keys this user owns. Parsable into an int.

1.8.2 ICaseSite/GetTradeStatus

GET https://api-trade.opskins.com/ICaseSite/GetTradeStatus/v1

Returns the Trade Status and Opened Case results from an offer created by a case website.

Authentication

API key required.

Input

Parameter Type Required Description
offer_id int • The trade offer ID that

was created by the re-
questing user.

38 Chapter 1. Issues

WAXExpressTrade Documentation, Release 0.0.1

Output

Parameter Type Description
offer object Standard Trade Offer Object
cases object Standard OpenedCase Object

1.8.3 ICaseSite/SendKeyRequest

POST https://api-trade.opskins.com/ICaseSite/SendKeyRequest/v1

Sends a trade offer to the user requesting some number of keys for uncasing items on a case website.

Ensure that remaining_opens for the case id is greater than 0 via ICase/GetCaseSchema , or you will
get an HTTP 400 error with the code 314 (TOO_MANY_REDEMPTIONS).

Authentication

API key required.

Note: OPSkins User ID can be found on the WAX ExpressTrade settings page.

1.8. ICaseSite 39

https://trade.opskins.com/settings/

WAXExpressTrade Documentation, Release 0.0.1

Input

Parameter Type Required Description
trade_url or steam_id string • The trade URL or the

Steam ID64 of the user

case_id int • The Case ID user wants to
open

amount int Number of these cases
that should be opened.
Defaults to 1.

expiration_time int Custom expiration time
for the trade offer in sec-
onds. Minimum 120 sec-
onds (2 minutes). De-
faults to 14 days.

message string Trade offer message that
will be displayed to the re-
cipient

referral_uid int (Optional) You can
choose to send this if
someone has referred
someone else to your
site. This should be an
OPSkins UID (of the
referrer). If this is set,
when commission for
the cases in this offer is
distributed, commission
will be split between
your site, the referrer,
and the case-opening user
(rebate, if set below).
You may set a custom
split rate under ICas-
eSite/UpdateCommissionSettings
with refer-
ral_commission_rate.
If this is the same as
network_user_id in ICas-
eSite/UpdateCommissionSettings,
the referral commission
will be merged into the
site’s commission.

rebate_commission_rate float (Optional) You can
choose to share com-
mission with the case-
opening User. Default
0.00%, Max 10.00%,
& Min 0.01%. If this is
set, when commission for
the cases in this offer is
distributed, commission
will be split between
your site, the User, and
referrer (only if set).
This works similarly to
referral_commission_rate
in ICas-
eSite/UpdateCommissionSettings.
If the case opening
UID is the same as
referral_uid above,
referral commission
will be merged into
the rebate commission,
or if it is the same as
network_user_id
in ICas-
eSite/UpdateCommissionSettings,
the rebate will be merged
into the site’s commis-
sion.

40 Chapter 1. Issues

WAXExpressTrade Documentation, Release 0.0.1

Output

Parame-
ter

Type Description

offer ob-
ject

Standard Trade Offer Object

offer_url string Full URL to the trade offer. The recipient of this offer can click this link to view the offer
and accept it.

1.8.4 ICaseSite/UpdateCommissionSettings

POST https://api-trade.opskins.com/ICaseSite/UpdateCommissionSettings/v1

Update commission settings for your VCaseUser. Link your OPSkins account to receive commission directly into
your USD Wallet.

Authentication

API key required.

Input

Parameter Type Required Description
network_id int • The ID of the network. 1

for OPSkins.com

network_user_id int • User ID on the network.
For OPSkins, your OP-
Skins User ID.

referral_commission_rate float (Below)

Important:

This is OPTIONAL!

Want all the commission? Don’t worry about this.
This only matters if you send referral_uid with ICaseSite/SendKeyRequest.

Want to share commission with referrering users?
This property is how many percent commission referrers should receive from total commission percentage (currently
10.00%). Default 5.00%, Max 10.00%, & Min 0.01%.
The ‘referrer’ is referral_uid (OPSkins UID), which can be sent when sending
ICaseSite/SendKeyRequest. You have to get this from the user (they have to provide to you) and then you
can send it.

For example, if this is set to 5.00 %, you will get $0.13 and the referrer $0.12, as the total commission amount (for
each case) is 10% of a Skeleton Key, which is $0.25. So by default (5.00%), the referrer will get half the commission
$0.12.

1.8. ICaseSite 41

WAXExpressTrade Documentation, Release 0.0.1

Note: You can find your OPSkins User ID on the WAX ExpressTrade settings page.

Output

Parameter Type Description
network_id int Returns database value (should be same as input).
network_user_id int Returns database value (should be same as input).
referral_commission_rate float Returns database value (should be same as input).

Listing 10: Output Example

{
"status": 1,
"time": 1531449864,
"response": {

"network_id": 1,
"network_user_id": 1234567891,
"referral_commission_rate": 2.5

}
}

1.9 IEthereum

1.9.1 IEthereum/GetContractAddress

GET https://api-trade.opskins.com/IEthereum/GetContractAddress/v1

Returns the most current blockchain transaction hash address for the contract.

Authentication

No auth required.

Input

none

Output

Parameter Type Description
contract_address string Contract Address Hash

42 Chapter 1. Issues

https://trade.opskins.com/settings/

WAXExpressTrade Documentation, Release 0.0.1

1.10 IItem

Endpoints to handle cases

Contents

• IItem

– IItem/GetAllItems

* Authentication

* Input

* Output

– IItem/GetItemsById

* Authentication

* OAuth Scopes

* Input

* Output

– IItem/WithdrawToOpskins

* Authentication

* OAuth Scopes

* Input

* Output

– IItem/GetItems

* Authentication

* Input

* Output

* VGO Wear Tier Index Map

– IItem/GetItemDefinitions

* Authentication

* Input

* Output

– IItem/GetRarityStats

* Authentication

* Input

* Output

– IItem/InstantSellRecentItems

* Authentication

* OAuth Scopes

1.10. IItem 43

WAXExpressTrade Documentation, Release 0.0.1

* Allowed Apps

* Input

* Output

1.10.1 IItem/GetAllItems

GET https://api-trade.opskins.com/IItem/GetAllItems/v1/

Authentication

API key required.

Input

Parameter Type Required Description
app_id int • Internal App ID (see

ITrade/GetApps)

sku csv-int Optional filtering by SKU
(for VGO), or def_id for
all other items

name string Optional filter/search by
item market name

page int Page number (starting
with 1, defaults to 1)

per_page int Number of items per page
(default 25, max 100, min
1)

sort int Standard Item Sorts
no_exclusions boolean By default some items are

excluded, see list below.
Sending 1 here will dis-
able all SKU exclusions.

Hint: Default Excluded SKUs: VGO 1 (WAX Key)

Output

Parameter Type Description
items array-object Array of Standard Item Object

44 Chapter 1. Issues

WAXExpressTrade Documentation, Release 0.0.1

Listing 11: Output Example

{
"status":1,
"time":1538684115,
"current_page":1,
"total_pages":9,
"response":{

"items":[
{

"id":911,
"sku":10011,
"wear":0.01472946,
"pattern_index":362,
"preview_urls":null,
"eth_inspect":null,
"trade_hold_expires":null,
"internal_app_id":1,
"inspect":null,
"tradable":true,
"attributes":{

"serial_sku":6,
"serial_sku_wear":6

},
"name":"Bayonet | Poison Target (Factory New)",
"category":"Covert Knife",
"rarity":"Covert",
"type":"Knife",
"paint_index":null,
"color":"#eb4b4b",
"image":{

"300px":"https://files.opskins.media/file/vgo-img/item/bayonet-
→˓poison-target-factory-new-300.png",

"600px":"https://files.opskins.media/file/vgo-img/item/bayonet-
→˓poison-target-factory-new-600.png"

},
"suggested_price":14000,
"suggested_price_floor":14000,
"wear_tier_index":1

},
{

"id":910,
"sku":106,
"wear":0.17418098,
"pattern_index":769,
"preview_urls":null,
"eth_inspect":null,
"trade_hold_expires":null,
"internal_app_id":1,
"inspect":null,
"tradable":true,
"attributes":{

"serial_sku":78,
"serial_sku_wear":44

},
"name":"P90 | Critical (Field-Tested)",
"category":"Restricted SMG",
"rarity":"Restricted",

(continues on next page)

1.10. IItem 45

WAXExpressTrade Documentation, Release 0.0.1

(continued from previous page)

"type":"SMG",
"paint_index":null,
"color":"#8847ff",
"image":{

"300px":"https://files.opskins.media/file/vgo-img/item/p90-critical-
→˓field-tested-300.png",

"600px":"https://files.opskins.media/file/vgo-img/item/p90-critical-
→˓field-tested-600.png"

},
"suggested_price":121,
"suggested_price_floor":121,
"wear_tier_index":3

}
]

}
}

1.10.2 IItem/GetItemsById

GET https://api-trade.opskins.com/IItem/GetItemsById/v1/

Get user items by id numbers.

Authentication

API key required.

OAuth Scopes

items

Input

Parameter Type Required Description
item_id int-csv • item id filter, separated

with comma

Output

Parameter Type Description
items array-object Array of Standard Item Object
unknown_items array Array of item ids that were not found.

1.10.3 IItem/WithdrawToOpskins

POST https://api-trade.opskins.com/IItem/WithdrawToOpskins/v1/

Withdraw items to OPSkins on-site inventory.

46 Chapter 1. Issues

WAXExpressTrade Documentation, Release 0.0.1

Authentication

API key required.

OAuth Scopes

manage_items

Input

Parameter Type Required Description
item_id int-csv • item id filter, separated

with comma

Output

Parameter Type Description
results object Result from OPSkins API
output object Archived items
-uid int OPSkins UID
-items object Archived items
–appid int Steam App ID
–contextid int Steam Context ID
–market_name string Market name
–owner_uid int OPSkins UID
–wear float Wear float value
–original_sale_id int Original sale ID on OPSkins

1.10.4 IItem/GetItems

Hint: This endpoint is deprecated in favor of IItem/GetItemDefinitions!

GET or POST https://api-trade.opskins.com/IItem/GetItems/v1/

• Fully supports VGO items

• Partially supports other items for seamless compability with vCase sites.

• (Only if full list of skus is provided from ICase/GetCaseSchema & Beware that the output may contain irrelavent
properties to the actual item, such as wear tier)

• All VGO items: https://api-trade.opskins.com/IItem/GetItems/v1

• Filter by SKU (VGO only): https://api-trade.opskins.com/IItem/GetItems/v1?
sku_filter=100

• Filter by SKU & Wear Tier (VGO only): https://api-trade.opskins.com/IItem/GetItems/
v1?sku_filter=100&wear_tier_index=1

1.10. IItem 47

WAXExpressTrade Documentation, Release 0.0.1

• Multiple SKU (VGO only): https://api-trade.opskins.com/IItem/GetItems/v1?
sku_filter=100,102&wear_tier_index=1

Note: POST is recommended, as you could easily exceed maximum URI size with GET when using sku_filter. If
you are receiving HTTP 500 errors when using GET, this is most likely the reason.

Authentication

None required.

Input

Parameter Type Required Description
sku_filter int-csv Optional SKU filter, separated with comma
–wear_tier_index int Optional alongside sku_filter

Output

Parameter Type Description
items ob-

ject
Object containing item meta data

–(sku) string SKU number
—-(wear_tier_index) string Wear tier index
——(meta data prop-
erties)

mix name, category, rarity, type, color, image, suggested_price, and paint_indexfrom
Standard Item Object

Note: VERSION 1 BUG WARNING: For SKU = 1 items (Skeleton Key), the wear tier index is missing. Instead,
the key is listed inside of a single-element array. So to access it, you would: items.1[0].name. This will be fixed in
version 2.

Listing 12: Example Output

{
"status": 1,
"time": 1524850074,
"response": {

"items": {
"10006": {

"1": {
"name": "Karambit | Poison Target (Factory New)",
"category": "Covert Knife",
"rarity": "Covert",
"type": "Knife",
"color": "#eb4b4b",
"image": {
"300px": "https://files.opskins.media/file/vgo-img/item/karambit-

→˓poison-target-factory-new-300.png",

(continues on next page)

48 Chapter 1. Issues

WAXExpressTrade Documentation, Release 0.0.1

(continued from previous page)

"600px": "https://files.opskins.media/file/vgo-img/item/karambit-
→˓poison-target-factory-new-600.png"

},
"suggested_price": 71436,
"paint_index": null

}
}

}
}

}

VGO Wear Tier Index Map

These mappings will never change, you may store and use as you please. Items without tiers, e.g. keys, have a wear
tier index of 0.

Listing 13: Example Output

{
"wear_tier_index_map": {

"": 0,
"Factory New": 1,
"Minimal Wear": 2,
"Field-Tested": 3,
"Well-Worn": 4,
"Battle-Scarred": 5

},
"wear_tier_index_to_float_map": {

"1": {
"min": 0,
"max": 0.06999999999999

},
"2": {

"min": 0.07,
"max": 0.14999999999999

},
"3": {

"min": 0.15,
"max": 0.37999999999999

},
"4": {

"min": 0.38,
"max": 0.44999999999999

},
"5": {

"min": 0.45,
"max": 1

}
}

}

1.10.5 IItem/GetItemDefinitions

GET or POST https://api-trade.opskins.com/IItem/GetItemDefinitions/v1/

1.10. IItem 49

WAXExpressTrade Documentation, Release 0.0.1

• All items for an app (limit 1000 per page): GetItemDefinitions/v1?app_id=1

• Filter by def_id: GetItemDefinitions/v1?app_id=1&def_id_filter=900000001,
900000002

Note: POST is recommended, as you could easily exceed maximum URI size with GET when using sku_filter. If
you are receiving HTTP 500 errors when using GET, this is most likely the reason.

Authentication

None required.

Input

Parameter Type Required Description
app_id int • Internal App ID (see

ITrade/GetApps)

def_id_filter csv-int Optional def_id comma-
separated filter

index_by string Optionally index the
output by market_name,
def_id, or sku, send it as
literal string

page int Page number in response
(starting with 1, defaults
to 1)

per_page int Number of items
per_page in response
(no more than 1000
(default))

50 Chapter 1. Issues

WAXExpressTrade Documentation, Release 0.0.1

Output

Param-
eter

Type Description

defini-
tions

array-
object
or
object

An array of objects or object list if index_by option is used

–def_id int Unique Definition ID, this is a unique & unchanging identifier for each item, regardless of
app_id. Not to be confused with sku, which is not unique per wear-tierfor VGO items. VGO
item def_id starts at 900,000,000 for no particular reason.

–sku int SKU for item. Mainly utilized for VGO items, for all other items, this will be the same as
def_id.

–inter-
nal_app_id

int Internal App ID

–name string Name, non-unique, most likely the same as market_name however
–mar-
ket_name

string Market name, unique per app_id

–color string Color with hex # for VGO (ID 1), for all others, no # – usually corresponds to the rarity of
the item

–image string Generic image URL
–sug-
gested_price

int Market suggested price

–sug-
gested_price_floor

int The minimum viable suggested price, does not change.

–at-
tributes

object Generic (non-unique) item attributes, all app-specific properties will be in here

Listing 14: Output Example (Array of objects)

{
"status":1,
"time":1544467201,
"current_page":1,
"total_pages":1,
"response":{

"definitions":[
{

"def_id":900000001,
"internal_app_id":1,
"name":"WAX Key",
"market_name":"WAX Key",
"color":"#777777",
"image":"https://files.opskins.media/file/vgo-img/item/wax-key-300.png",
"suggested_price":250,
"suggested_price_floor":250,
"attributes":{

"category":"WAX Key",
"image_generic_300":"https://files.opskins.media/file/vgo-img/item/

→˓wax-key-300.png",
"image_generic_600":"https://files.opskins.media/file/vgo-img/item/

→˓wax-key-600.png",
"image_generic_900":"https://files.opskins.media/file/vgo-img/item/

→˓wax-key-900.png",
(continues on next page)

1.10. IItem 51

WAXExpressTrade Documentation, Release 0.0.1

(continued from previous page)

"image_generic_1800":"https://files.opskins.media/file/vgo-img/item/
→˓wax-key-1800.png",

"image_generic_2500":"https://files.opskins.media/file/vgo-img/item/
→˓wax-key-2500.png",

"paint_index":null,
"rarity":null,
"suggested_price_floor":250,
"type":"WAX Key",
"wear_tier_index":0

}
}

]
}

}

Listing 15: Output Example (Indexed by def_id)

{
"status":1,
"time":1544467222,
"current_page":1,
"total_pages":1,
"response":{

"definitions":{
"900000001":{

"def_id":900000001,
"internal_app_id":1,
"name":"WAX Key",
"market_name":"WAX Key",
"color":"#777777",
"image":"https://files.opskins.media/file/vgo-img/item/wax-key-300.png",
"suggested_price":250,
"suggested_price_floor":250,
"attributes":{

"category":"WAX Key",
"image_generic_300":"https://files.opskins.media/file/vgo-img/item/

→˓wax-key-300.png",
"image_generic_600":"https://files.opskins.media/file/vgo-img/item/

→˓wax-key-600.png",
"image_generic_900":"https://files.opskins.media/file/vgo-img/item/

→˓wax-key-900.png",
"image_generic_1800":"https://files.opskins.media/file/vgo-img/item/

→˓wax-key-1800.png",
"image_generic_2500":"https://files.opskins.media/file/vgo-img/item/

→˓wax-key-2500.png",
"paint_index":null,
"rarity":null,
"suggested_price_floor":250,
"type":"WAX Key",
"wear_tier_index":0

}
},
"900000002":{

"def_id":900000002,
"internal_app_id":1,
"name":"AK-47 | Overdrive (Factory New)",

(continues on next page)

52 Chapter 1. Issues

WAXExpressTrade Documentation, Release 0.0.1

(continued from previous page)

"market_name":"AK-47 | Overdrive (Factory New)",
"color":"#eb4b4b",
"image":"https://files.opskins.media/file/vgo-img/item/ak-47-overdrive-

→˓factory-new-300.png",
"suggested_price":23252,
"suggested_price_floor":23252,
"attributes":{

"category":"Covert Rifle",
"image_generic_300":"https://files.opskins.media/file/vgo-img/item/

→˓ak-47-overdrive-factory-new-300.png",
"image_generic_600":"https://files.opskins.media/file/vgo-img/item/

→˓ak-47-overdrive-factory-new-600.png",
"image_generic_900":"https://files.opskins.media/file/vgo-img/item/

→˓ak-47-overdrive-factory-new-900.png",
"image_generic_1800":"https://files.opskins.media/file/vgo-img/item/

→˓ak-47-overdrive-factory-new-1800.png",
"image_generic_2500":"https://files.opskins.media/file/vgo-img/item/

→˓ak-47-overdrive-factory-new-2500.png",
"paint_index":null,
"rarity":"Covert",
"suggested_price_floor":23252,
"type":"Rifle",
"wear_tier_index":1

}
}

}
}

}

1.10.6 IItem/GetRarityStats

GET https://api-trade.opskins.com/IItem/GetRarityStats/v1/

Get item rarity stats per Definition ID (SKU) (currently only for VGO)

Authentication

API key required.

Input

Parameter Type Required Description
app_id int • Internal App ID (see

ITrade/GetApps)

def_id int-csv Definition IDs (SKUs)
separated by commas

• If an item was never unboxed (very rare items), no stats will be outputted

• An individual item’s permanent serial number will be inside Standard Item Object as serial_sku_wear.

1.10. IItem 53

WAXExpressTrade Documentation, Release 0.0.1

Output

Parame-
ter

Type Description

items ob-
ject

Object containing rarity data per Definition ID

-(def_id) string Definition ID
–def_id int Definition ID
–def_sub_id int/null Sub-Definition ID, for VGO this is the Wear Tier Index (1,2,3,4,5)
–lat-
est_serial

int The latest Serial Number given for an item of this type (only per Def ID). Not currently dis-
played on our sites.

–sub_items ob-
ject

Object containing rarity data per Definition ID & Sub Definition ID

—(def_sub_id)string Sub-Definition ID
—-def_id int Definition ID
—–def_sub_idint Sub-Definition ID
—–lat-
est_serial

int The latest serial number given for an item of this type. This is what is displayed as “Total
Unboxed” on WAX ExpressTrade & OPSkins Marketplace.

Listing 16: Output Example

{
"status":1,
"time":1536707797,
"response":{

"items":{
"102":{

"def_id":102,
"def_sub_id":null,
"latest_serial":2,
"sub_items":{

"2":{
"def_id":102,
"def_sub_id":2,
"latest_serial":1

},
"5":{

"def_id":102,
"def_sub_id":5,
"latest_serial":1

}
}

}
}

}
}

1.10.7 IItem/InstantSellRecentItems

POST https://api-trade.opskins.com/IItem/InstantSellRecentItems/v1/

This endpoint can be used to instant-sell recently (15 min) unboxed items on OPSkins. Items are automatically
transferred to OPSkins and then sold via the endpoint ISales/InstantSellItems/v1. Note that partial success is possible

54 Chapter 1. Issues

WAXExpressTrade Documentation, Release 0.0.1

with this endpoint. It’s also possible that we will send a status of 1 but the OPSkins endpoint will fail completely,
as shown in the Output Examples below.

Authentication

API key required.

OAuth Scopes

instant_sell_recent_items

• If using OAuth, OPSkins wallet balance information will not be shown unless balance scope is available.

Allowed Apps

• All apps & items allowed. Note that the OPSkins endpoint may still reject some apps & items.

Input

Parameter Type Required Description
item_id int-csv • List of Item IDs, separated

with commas. Maximum
100.

instant_sell_type int 1 for OPSkins Credits, 2
for USD (default)

Output

Parameter Type Description
valid_item_ids array-

int
Item IDs considered valid

un-
known_item_ids

array-
int

Item IDs that were not found in the database or do not belong to you

not_recent_item_ids array-
int

Item IDs created more than 15 minutes ago, which are not eligible

ineligi-
ble_item_ids

array-
int

Item IDs that are currently not eligible for trade or transfer

not_allowed_item_idsarray-
int

Deprecated (all apps & items allowed). Item IDs that are not allowed for this end-
point. See Allowed Apps above.

isales_instantsellitems_v1mixed Full ISales/InstantSellItems/v1 response from OPSkins API

Listing 17: Output Example (partial success)

{
"status":1,
"time":1542928287,
"response":{

"valid_item_ids":[
(continues on next page)

1.10. IItem 55

WAXExpressTrade Documentation, Release 0.0.1

(continued from previous page)

391
],
"unknown_item_ids":[

291,
292

],
"not_recent_item_ids":[

],
"ineligible_item_ids":[

],
"not_allowed_item_ids":[

],
"isales_instantsellitems_v1":{

"status":1,
"time":1542928287,
"balance":500027520,
"credits":245,
"cryptoBalances":{

"ETH":"0.000000000000000000",
"WAX":"0.000000000000000000"

},
"response":{

"items":[
{

"saleid":309421537,
"new_itemid":309421538,
"item_id":391,
"name":"Huntsman Knife | Cyber Sport (Battle-Scarred)"

}
],
"items_count":1,
"total_value":{

"usd":6601,
"credits":0

}
}

}
}

}

Listing 18: Output Example (None of the provided items exist or belong
to you)

{
"status": 312,
"time": 1542910778,
"message": "None of the items provided exist or belong to you: 159, 160"

}

56 Chapter 1. Issues

WAXExpressTrade Documentation, Release 0.0.1

Listing 19: Output Example (None of the items provided are
valid/eligible)

{
"status": 312,
"time": 1542910641,
"message": "None of the items provided are valid/eligible",
"response": {

"valid_item_ids": [],
"unknown_item_ids": [

159,
160

],
"not_recent_item_ids": [

180
],
"ineligible_item_ids": [],
"not_allowed_item_ids": []

}
}

Listing 20: Output Example (OPSkins API Error)

{
"status": 1,
"time": 1542852394,
"response": {

"isales_instantsellitems_v1": {
"status": 2000,
"time": 1542852394,
"message": "Something went wrong."

}
}

}

1.10. IItem 57

WAXExpressTrade Documentation, Release 0.0.1

Listing 21: Output Example (Error while transferring items to OPSkins)

{
"status": 202,
"time": 1542864143,
"message": "Error during transfer of items to OPSkins. It's possible the items

→˓were transferred successfully.",
"response": {

"valid_item_ids": [
174

],
"unknown_item_ids": [

159,
160

],
"not_recent_item_ids": [],
"ineligible_item_ids": [],
"not_allowed_item_ids": []

}
}

1.11 ITrade

Endpoints which allows Peer-to-Peer Trading.

Contents

• ITrade

– ITrade/AcceptOffer

* Authentication

* OAuth Scopes

* Input

* Output

– ITrade/CancelOffer

* Authentication

* OAuth Scopes

* Input

* Output

– ITrade/GetApps

* Authentication

* Input

* Output

– ITrade/GetOffer

58 Chapter 1. Issues

WAXExpressTrade Documentation, Release 0.0.1

* Authentication

* OAuth Scopes

* Input

* Output

– ITrade/GetOffers

* Authentication

* OAuth Scopes

* Input

* Output

– ITrade/GetTradeUrl

* Authentication

* OAuth Scopes

* Input

* Output

– ITrade/GetUserInventory

* Authentication

* Input

* Output

* Sort parameter values

– ITrade/GetUserInventoryFromSteamId

* Authentication

* OAuth Scopes

* Input

* Output

* Sort parameter values

– ITrade/RegenerateTradeUrl

* Authentication

* OAuth Scopes

* Input

* Output

– ITrade/SendOffer

* Authentication

* OAuth Scopes

* Input

* Output

1.11. ITrade 59

WAXExpressTrade Documentation, Release 0.0.1

– ITrade/SendOfferToSteamId

* Authentication

* OAuth Scopes

* Input

* Output

1.11.1 ITrade/AcceptOffer

POST https://api-trade.opskins.com/ITrade/AcceptOffer/v1/

Accepts offer sent by another user

Authentication

API key required.

OAuth Scopes

• trades

• open_cases (restricted to only case-opening offers)

Input

Parameter Type Required Description
twofactor_code string • 2-factor authentication

code

offer_id int • Trade offer Id you want to
accept

Output

Parameter Type Description
offer object Standard Trade Offer Object
new items array-object New items for the recipient (user that makes this API call). Standard Item Object
failed_cases int A count of failed cases opened with keys, 0 if none failed.

1.11.2 ITrade/CancelOffer

POST https://api-trade.opskins.com/ITrade/CancelOffer/v1/

Cancels a trade offer

If cancelled by the sender it will go into STATE_CANCELLED (6) and if cancelled by the receiver it will go into
STATE_DECLINED (7).

60 Chapter 1. Issues

WAXExpressTrade Documentation, Release 0.0.1

Authentication

API key required.

OAuth Scopes

trades

Input

Parameter Type Required Description
offer_id int • Offer ID that you’re a

party to (sender or re-
ceiver)

Output

Parameter Type Description
offer object Standard Trade Offer Object

1.11.3 ITrade/GetApps

GET https://api-trade.opskins.com/ITrade/GetApps/v1/

Get all supported apps and their descriptions.

Authentication

No auth required.

Input

none

Output

Parameter Type Description
apps object List of apps and descriptions
–internal_app_id int Internal App ID
–steam_app_id int Steam App ID
–steam_context_id int Steam Context ID
–name string Short name of app
–long_name string Long name of app
–img string Image URL of app icon https://opskins.com/images/games/logo-small-vgo.jpg
–img_thumb string Thumbnail image for app https://opskins.com/images/game-thumb-vgo.jpg
–default int If property exists, this is the default app. Not outputted for other apps.

1.11. ITrade 61

https://opskins.com/images/games/logo-small-vgo.jpg
https://opskins.com/images/game-thumb-vgo.jpg

WAXExpressTrade Documentation, Release 0.0.1

Listing 22: Output Example

{
"status": 1,
"time": 1528135996,
"response": {

"apps": [
{

"internal_app_id": 1,
"steam_app_id": 1912,
"steam_context_id": 1,
"name": "VGO",
"long_name": "VGO",
"img": "https://opskins.com/images/games/logo-small-vgo.jpg",
"default": 1

}
]

}
}

1.11.4 ITrade/GetOffer

GET https://api-trade.opskins.com/ITrade/GetOffer/v1/

Get an individual trade offer

You must be one of the parties involved in the offer (sender/receiver).

Authentication

API key required.

OAuth Scopes

items

Input

Parameter Type Required Description
offer_id int • ID of trade offer

Output

Parameter Type Description
offer object Standard Trade Offer Object

62 Chapter 1. Issues

WAXExpressTrade Documentation, Release 0.0.1

1.11.5 ITrade/GetOffers

GET https://api-trade.opskins.com/ITrade/GetOffers/v1/

Get user’s trade offers

Authentication

API key required.

OAuth Scopes

items

Input

Parame-
ter

Type Re-
quired

Description

uid int ID of other user, involved in offers
state string A comma-separated list of offer states to filter by (See available states in

ITrade).
type string One of sent, received
page int page number in response (starting with 1, default to 1)
per_page int number of items per_page in response (no more than 100, defaults to 100)
ids int-

csv
Trade offer IDs list filter

sort string One of created, expired, modified

Output

Parameter Type Description
offers array-object Array of Standard Trade Offer Object
total int Total number of offers matching the input filters

1.11.6 ITrade/GetTradeUrl

GET https://api-trade.opskins.com/ITrade/GetTradeURL/v1/

Get your account’s trade URL, allowing P2P trading.

Authentication

API key required.

OAuth Scopes

identity_basic, identity, trades

1.11. ITrade 63

WAXExpressTrade Documentation, Release 0.0.1

Input

none

Output

Parame-
ter

Type Description

uid int Your OPSkins User ID
token string Your trade token
long_url string The actual URL someone should go to in order to send a trade offer to your account.
short_url string A shortened alias for long_url of the type “. . . /t/1/Lhn9d7fVL1U”. This redirects to the long

URL.

1.11.7 ITrade/GetUserInventory

GET https://api-trade.opskins.com/ITrade/GetUserInventory/v1/

Get trade offer recipient’s inventory.

Authentication

No auth required.

Input

Parameter Type Required Description
uid int • User ID of user whose in-

ventory you want to see

app_id int • Internal App ID (see
ITrade/GetApps)

page int Page number in response
(starting with 1, defaults
to 1)

per_page int Number of items
per_page in response
(no more than 500)

search string Additional search by
item’s name

sort int Code to set how results
should be sorted. See
available types below or in
the output response

64 Chapter 1. Issues

WAXExpressTrade Documentation, Release 0.0.1

Output

Parameter Type Description
total int Total number of items (filtered, if search parameter is passed)
items object Standard Item Object
user_data object Standard User Public Profile Object
sort_parameters array-object Available sort parameters

Sort parameter values

• 1: By name ASC (alphabetical, z first)

• 2: By name DESC (alphabetical, a first)

• 3: By last_update ASC (oldest first)

• 4: By last_update DESC (newest first)

• 5: By suggested price ASC (lowest first)

• 6: By suggested price DESC (highest first)

1.11.8 ITrade/GetUserInventoryFromSteamId

GET https://api-trade.opskins.com/ITrade/GetUserInventoryFromSteamId/v1/

Get trade offer recipient’s inventory by SteamID.

Authentication

API key required.

OAuth Scopes

items, trades

1.11. ITrade 65

WAXExpressTrade Documentation, Release 0.0.1

Input

Parameter Type Required Description
steam_id int • Steam ID of user whose

inventory you want to see

app_id int • Internal App ID (see
ITrade/GetApps)

page int Page number in response
(starting with 1, default to
1)

per_page int Number of items
per_page in response
(no more than 500)

search string Additional search by
item’s name

sort int Code to set how results
should be sorted. See
available types below or in
the output response

Output

Parameter Type Description
total int Total number of items (filtered, if search parameter is passed)
items object Standard Item Object
user_data object Standard User Public Profile Object
sort_parameters array-object Available sort parameters

Sort parameter values

• 1: By name ASC (alphabetical, z first)

• 2: By name DESC (alphabetical, a first)

• 3: By last_update ASC (oldest first)

• 4: By last_update DESC (newest first)

• 5: By suggested price ASC (lowest first)

• 6: By suggested price DESC (highest first)

1.11.9 ITrade/RegenerateTradeUrl

POST https://api-trade.opskins.com/ITrade/RegenerateTradeURL/v1/

Regenerate your account’s trade URL for P2P trading, invalidating the old one.

Authentication

API key required.

66 Chapter 1. Issues

WAXExpressTrade Documentation, Release 0.0.1

OAuth Scopes

edit_account

Input

none

Output

Parame-
ter

Type Description

uid int Your OPSkins User ID
token string Your new trade token
long_url string The actual URL someone should go to in order to send a trade offer to your account.
short_url string A shortened alias for long_url of the type “. . . /t/1/Lhn9d7fVL1U”. This redirects to the long

URL.

1.11.10 ITrade/SendOffer

POST https://api-trade.opskins.com/ITrade/SendOffer/v1/

Sends trade offer to another user including your and their items

Authentication

API key required.

OAuth Scopes

trades

Input

One of: uid + token or trade_url is required.

1.11. ITrade 67

WAXExpressTrade Documentation, Release 0.0.1

Parameter Type Required Description
twofactor_code int • 2-factor authentication

code

uid int User ID of user you want
to send your trade offer to

token string Trade token of user you
want to send your trade of-
fer to

trade_url string Trade URL of the user you
want to send your trade of-
fer to.

items_to_send csv-int A comma-separated list of
(int) Item IDs you wish to
send to recipient. Maxi-
mum 100 items.

items_to_receive csv-int A comma-separated list of
(int) Item IDs you wish to
receive from the recipient.
Maximum 100 items.

expiration_time int Custom expiration time
for an offer in seconds.
Minimum 120 seconds (2
minutes). Defaults to 14
days.

message string Trade offer message that
will be displayed to the re-
cipient

Output

Parameter Type Description
offer object Standard Trade Offer Object

1.11.11 ITrade/SendOfferToSteamId

POST https://api-trade.opskins.com/ITrade/SendOfferToSteamId/v1/

Sends trade offer to another user, including your and their items

Authentication

API key required.

OAuth Scopes

trades

68 Chapter 1. Issues

WAXExpressTrade Documentation, Release 0.0.1

Input

Parameter Type Required Description
twofactor_code int • 2FA Auth Code

steam_id string • Steam ID of user you want
to send your trade offer to

items_to_send csv-int A comma-separated list of
(int) Item IDs you wish to
send to recipient. Maxi-
mum 100 items.

items_to_receive csv-int A comma-separated list of
(int) Item IDs you wish to
receive from the recipient.
Maximum 100 items.

expiration_time int Custom expiration time
for an offer in seconds.
Minimum 120 seconds (2
minutes). Defaults to 14
days.

message string An optional message to
include with your trade of-
fer, up to 190 characters.

Output

Parameter Type Description
offer object Standard Trade Offer Object

1.12 IUser

Endpoints to handle user related things

Contents

• IUser

– IUser/CreateVCaseUser

* Authentication

* Input

* Output

– IUser/GetInventory

* Authentication

* OAuth Scopes

1.12. IUser 69

WAXExpressTrade Documentation, Release 0.0.1

* Input

* Output

– IUser/GetProfile

* Authentication

* Authentication

* Input

* Output

– IUser/UpdateProfile

* Authentication

* OAuth Scopes

* Input

* Output

– IUser/UserReports

* Authentication

* Input

* Output

1.12.1 IUser/CreateVCaseUser

POST https://api-trade.opskins.com/IUser/CreateVCaseUser/v1/

Create a special case-website user

VCase Site users are restricted from most parts of the API. They cannot own items or send regular trades. But they
gain access to a set of new API endpoints under the ICaseSite interface.

You generally only need to create a VCase Site API key once, which can be done with the following example CURL
command.

$ curl -d '{"site_url":"http://yoursite.com","display_name":"yoursite"}' -H "Content-
→˓Type: application/json" -X POST https://api-trade.opskins.com/IUser/CreateVCaseUser/
→˓v1/

Authentication

No auth required.

Creates a case-website user, which can access all endpoints under the ICaseSite interface.

70 Chapter 1. Issues

WAXExpressTrade Documentation, Release 0.0.1

Input

Parameter Type Required Description
site_url string • Must be a valid & unique

full URL to your case-
website.

display_name string • Display name for case-
website user. This name
will appear in all trade of-
fers.

Output

Pa-
rame-
ter

Type Description

api_key string User API key. Keep it in a safe place and use it to access ICaseSite endpoints.
user ob-

ject
Standard User Profile Object – User ID will not be a matching OPSkins UID, it will be unique to
WAX ExpressTrade and will be a negative integer.

1.12.2 IUser/GetInventory

GET https://api-trade.opskins.com/IUser/GetInventory/v1/

Get Your Inventory

Authentication

API key required.

OAuth Scopes

items, trades

1.12. IUser 71

WAXExpressTrade Documentation, Release 0.0.1

Input

Parameter Type Required Description
app_id int • Internal App ID (see

ITrade/GetApps)

page int Page number in response
(starting with 1, defaults
to 1)

per_page int Number of items
per_page in response
(no more than 500)

search string Additional search by
item’s name

sort int Standard Item Sorts
filter_in_trade boolean Removes items that are

part of an active trade
from the response.

Output

Parameter Type Description
total int Total number of items (filtered, if search parameter is passed)
items array-

object
Items list, based on pagination and search filters. Standard Item Object

sort_parameters array-
object

Available sort parameters

items_in_active_offersobject-
array

List of Item IDs and matching Offer IDs that are involved in active trade offers. Keys
are Item IDs and values are an array of Offer IDs.

–value int Value expected in this method
–dis-
play_name

string Display name

1.12.3 IUser/GetProfile

GET https://api-trade.opskins.com/IUser/GetProfile/v1/

Get Your Profile

Authentication

API key required.

Authentication

identity_basic, identity

72 Chapter 1. Issues

WAXExpressTrade Documentation, Release 0.0.1

Input

Parameter Type Required Description
with_extra bool Should we send sensitive user data? Defaults to false

Output

Parameter Type Description
user object Standard User Profile Object

1.12.4 IUser/UpdateProfile

POST https://api-trade.opskins.com/IUser/UpdateProfile/v1/

Update Your Profile

Authentication

API key required.

OAuth Scopes

edit_account

Input

Parameter Type Re-
quired

Description

display_name string Name to display on trade offers
inventory_is_private boolean Whether inventory is private (nobody can see it, even with token)
al-
low_twofactor_code_reuse

boolean Allow Two Factor code reuse for certain features (Send Offer,
Accept Offer)

auto_accept_gift_trades boolean Auto-accept gift trade offers
anony-
mous_transactions

boolean Hide my username in WAX transaction records

Output

Parameter Type Description
user object Standard User Profile Object

1.12.5 IUser/UserReports

POST https://api-trade.opskins.com/IUser/UserReports/v1

1.12. IUser 73

WAXExpressTrade Documentation, Release 0.0.1

Authentication

API key required.

Input

Parameter Type Required Description
message string • Message included in the

report

report_type integer • Reason - spam = 1, phish-
ing = 2, error = 3;

offer_id integer • Id of the reported offer

Output

Parameter Type Description
success boolean true if everything went well

1.13 Additional Information

Contents

• Additional Information

– Standard OpenedCase Object

– Case Status

– Standard Item Object

– Output Example for Standard Item Object

– Standard Trade Offer Object

– Offer States

– Standard User Profile Object

– Standard User Public Profile Object

74 Chapter 1. Issues

WAXExpressTrade Documentation, Release 0.0.1

1.13.1 Standard OpenedCase Object

Parameter Type Description
id int Unique Case ID
status int Case Status ID
status_text string Case Status Description
case_id int Case Schema ID
case_site_trade_offer_id int Trade Offer ID
item object Standard Item Object

1.13.2 Case Status

• STATE_ERROR = 1

• STATE_PENDING = 2

• STATE_OPENED = 3

Listing 23: Output Example for Standard OpenedCase Object

{
"status":1,
"time":1535545650,
"response":{
"id": 1,
"status": 3,
"status_text": "Opened",
"case_id": 1,
"case_site_trade_offer_id": 3215,
"item": { }

}
}

1.13. Additional Information 75

WAXExpressTrade Documentation, Release 0.0.1

1.13.3 Standard Item Object

Param-
eter

Type Description

id int Item ID
inter-
nal_app_id

int Internal App ID (see ITrade/GetApps)

sku int Item definition (meta-data) SKU #
wear float Wear float value, only applicable for certain apps
trade_hold_expiresint /

null
Trade hold expiration date. null if no trade hold

name string Market name e.g. “MAG-7 Gold Digger (Factory New)”
category string Category name e.g. “Restricted Rifle”
rarity string Category rarity e.g. “Restricted” – only outputted for VGO
type string Category type e.g. “Rifle” – only outputted for VGO
color string Color hex, includes #
image ob-

ject
Generic image URLs

–300px string 300px image URL - https://files.opskins.media/file/vgo-img/item/
dual-berettas-trigger-happy-battle-scarred-300.png

–600px string 600px image URL - https://files.opskins.media/file/vgo-img/item/
dual-berettas-trigger-happy-battle-scarred-600.png

sug-
gested_price

int OPSkins 7-day suggested price (US cents)

sug-
gested_price_floor

int (Only for VGO) The minimum viable suggested price, does not change.

pre-
view_urls

ob-
ject

Field Inspection URLs for VGO items. Some of these properties may not be outputted if not
available. If they are provided, the image or video itself may not be generated yet, so you should
fallback to generic images provided in image object.

–thumb_imagestring https://files.opskins.media/file/vgo-img/previews/163609_thumb.jpg
–front_imagestring https://files.opskins.media/file/vgo-img/previews/163638_front.jpg
–back_imagestring https://files.opskins.media/file/vgo-img/previews/163638_back.jpg
–video string https://files.opskins.media/file/vgo-img/previews/163638_video.webm
inspect string

/
null

Steam in-game inspection URL. Can be null.

eth_inspect string
/
null

Etherscan.io Ethereum Transaction URL. null for inapplicable apps.

pat-
tern_index

int Pattern index (value between 1-1000) (only available for VGO, null for other apps)

paint_indexint /
null

Paint index value for a CS:GO item. 0 or null for items without a paint-index.

1.13.4 Output Example for Standard Item Object

Listing 24: Output Example for Standard Item Object

{
"id":363645,
"sku":10006,

(continues on next page)

76 Chapter 1. Issues

https://files.opskins.media/file/vgo-img/item/dual-berettas-trigger-happy-battle-scarred-300.png
https://files.opskins.media/file/vgo-img/item/dual-berettas-trigger-happy-battle-scarred-300.png
https://files.opskins.media/file/vgo-img/item/dual-berettas-trigger-happy-battle-scarred-600.png
https://files.opskins.media/file/vgo-img/item/dual-berettas-trigger-happy-battle-scarred-600.png
https://files.opskins.media/file/vgo-img/previews/163609_thumb.jpg
https://files.opskins.media/file/vgo-img/previews/163638_front.jpg
https://files.opskins.media/file/vgo-img/previews/163638_back.jpg
https://files.opskins.media/file/vgo-img/previews/163638_video.webm

WAXExpressTrade Documentation, Release 0.0.1

(continued from previous page)

"wear":0.583130179639101,
"pattern_index":549,
"preview_urls":{

"thumb_image":"https://files.opskins.media/file/vgo-img/previews/164325_thumb.
→˓jpg",

"front_image":"https://files.opskins.media/file/vgo-img/previews/164342_front.
→˓jpg",

"back_image":"https://files.opskins.media/file/vgo-img/previews/164342_back.jpg
→˓",

"video":"https://files.opskins.media/file/vgo-img/previews/164342_video.webm"
},
"eth_inspect":null,
"trade_hold_expires":null,
"internal_app_id":1,
"inspect":null,
"name":"Karambit | Poison Target (Factory New)",
"category":"Covert Knife",
"rarity":"Covert",
"type":"Knife",
"paint_index":null,
"color":"#eb4b4b",
"image":{

"300px":"https://files.opskins.media/file/vgo-img/item/karambit-poison-target-
→˓factory-new-300.png",

"600px":"https://files.opskins.media/file/vgo-img/item/karambit-poison-target-
→˓factory-new-600.png"

},
"suggested_price":71436

}

1.13. Additional Information 77

WAXExpressTrade Documentation, Release 0.0.1

1.13.5 Standard Trade Offer Object

Parameter Type Description
offer object Holds offer and item data
–id int offer id
–sender object Offer sender’s information
—-uid int Sender’s uid
—-steam_id string Senders’s SteamID
—-display_name string Sender’s display name
—-avatar string Sender’s avatar image url
—-verified bool Is this user verified on OPSkins by support?
—-items object Items which sender offered for trade in the offer. Standard Item Object
–recipient object Offer recipient’s information
—-uid int Recipient’s uid
—-steam_id string Recipient’s SteamID
—-display_name string Recipient’s display name
—-avatar string Recipient’s avatar image url
—-verified bool Is this user verified on OPSkins by support?
—-items object Recipient’s items which sender wanted to receive in the offer. Standard Item Object
–state int Offer state int – Offer States
–state_name string State’s display name e.g “Active”
–time_created int Offer creation unix timestamp
–time_updated int Last update unix timestamp
–time_expires int Offer expiration unix timestamp
–message string Message from sender to receiver
–is_gift boolean Whether or not this offer is a gift (you are not losing any items).
–is_case_opening boolean Whether or not this offer is from a vCase website.
–sent_by_you bool Whether or not the offer was sent by you. Not outputted on no-auth endpoints.

1.13.6 Offer States

• STATE_ACTIVE = 2

– The offer is active and the recipient can accept it to exchange the items

• STATE_ACCEPTED = 3

– The recipient accepted the offer and items were exchanged

• STATE_EXPIRED = 5

– The offer expired from inactivity

• STATE_CANCELED = 6

– The sender canceled the offer

• STATE_DECLINED = 7

– The recipient declined the offer

• STATE_INVALID_ITEMS = 8

– One of the items in the offer is no longer available so the offer was canceled automatically

• STATE_PENDING_CASE_OPEN = 9

78 Chapter 1. Issues

WAXExpressTrade Documentation, Release 0.0.1

– The trade offer was initiated by a VCase site and it’s awaiting eth confirmations. User’s keys have
been removed, but may be restored on error later.

• STATE_EXPIRED_CASE_OPEN = 10

– The trade offer was initiated by a VCase site and there was an error opening case due to back-end
issues. No items should have been exchanged.

• STATE_FAILED_CASE_OPEN = 12

– The trade offer was initiated by a VCase site and we were unable to generate items on the blockchain,
so the user’s keys have been refunded.

If a case opening succeeds from a vcase site, the offer will go into STATE_ACCEPTED and the items generated from
the case opening will appear in the trade offer as if they came from the vcase site user. The end-result is that the user
will see their keys exchanged for items in the trade offer on success.

1.13.7 Standard User Profile Object

Parameter Type Description
user object Holds user info
–id int OPSkins.com User ID
–steam_id string Steam ID64
–display_name string Display name
–avatar string URL to avatar
–twofactor_enabled boolean Whether or not user has Two-Factor Auth enabled.
–api_key_exists boolean See whether user has API Key
–sms_phone string/null (Optional via with_extra) Phone number used for SMS verification
–contact_email string/null (Optional via with_extra) Email address
–inventory_is_private boolean (Optional via with_extra) Set whether inventory is private (nobody can see

it, even with token)
–al-
low_twofactor_code_reuse

boolean Allow Two Factor code reuse for certain features (Send Offer, Accept Offer)

1.13.8 Standard User Public Profile Object

Parameter Type Description
user_data object Holds user info
–username string Display name
–avatar string URL to avatar

1.13. Additional Information 79

	Issues
	Getting Started
	Initial Testing
	Setup
	Backend (Server)
	Frontend (Website)
	Quick Overview
	ICase
	ICaseSite
	IEthereum
	IItem
	ITrade
	IUser
	Additional Information

